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Abstract

In this thesis we are interested in describing anomalous diffusion processes,
which are one of a number of real world applications for fractional calcu-
lus. For example the dispersal of contaminants in groundwater flow may not
adhere to standard diffusion, so another method is required to model this
phenomenon. Fractional calculus provides an avenue for this description.

Following an introduction to the field of fractional calculus, we present a
derivation of the standard diffusion equation from a probabilistic description
of the microscopic movements of a random walker. The derivation relies
on the walker moving with finite mean waiting time, and with finite vari-
ance of jump length. The asymptotic behaviour of walkers with anomalous
microscopic dynamics which do not have these characteristics will then be
explored. By varying these behaviours, it will be shown that the fractional
diffusion equation can be used to model the diffusion of particles.

We solve the fractional diffusion equation on both a bounded and an un-
bounded space domain, and examine the solutions. It will be shown that the
solutions to fractional diffusion equations recover known solutions for stan-
dard diffusion in appropriate limits while also providing new information
about non-integer-order diffusion.
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Chapter 1

Introduction

Since the discovery of physical fractals and fractal scaling laws many ap-
plications for fractional calculus have been found. For example, fractional
derivatives can be used to model the viscoelastic responses of breast tissue to
differentiate cancerous cells, aiding diagnosis [7]. An example of the fractal
surface of breast tissue can be seen in Figure 1.1. Fractional-order models
can also be used in genetic algorithms to capture complicated mutation phe-
nomena [20], and to model the effect of scaling on the microstructures of
materials [5].

In addition to modelling fractal systems, fractional calculus can help mathe-
maticians understand fractal functions such as the Weierstrass function and
the Weierstrass-Mandelbrot function [22]. These functions are continuous
everywhere but differentiable nowhere and are self-similar. An example is
shown in Figure 1.2. These functions are however fractionally differentiable,
and by taking fractional derivatives Yao et al. have proven other results
about the fractal dimension of the image of specific sets under the functions
in Ref. [21].

Another of the main uses for fractional calculus is in the field of fractional
diffusion, which will be the main focus of this thesis.

The standard diffusion equation is given by

∂ρ(x, t)

∂t
= K1

∂2ρ(x, t)

∂x2
,

for K1 > 0. While standard diffusion describes how the concentration of
a liquid or gas diffuses freely from a source, we are sometimes interested
in anomalous diffusion. That is, we are concerned with diffusion that has
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Figure 1.1: The surface of breast tissue which can be modelled using frac-
tional calculus. After [4].

been aided or hindered in some way. For example, we may wish to model
diffusion through a porous rock containing fissures that alter the large-scale
diffusion of a substance [2]. This anomalous diffusion can be described by the
fractional diffusion equation, where an α-order fractional derivative replaces
either the partial time derivative or the second partial space derivative in
the standard diffusion equation [19]. Thus the fractional diffusion equation
is given by

∂αρ(x, t)

∂tα
= Kα

∂2ρ(x, t)

∂x2
, (1.1)

where 0 < α ≤ 2, which we call the time-fractional diffusion equation, or

∂ρ(x, t)

∂t
= Kµ

∂µρ(x, t)

∂xµ
, (1.2)

where 1 < µ < 2, which we call the space-fractional diffusion equation.

In this thesis we will examine how the diffusion equation can be used to
describe the macroscopic movements of a random walker, given a full proba-
bilistic description of its microscopic movements. Once this link is established
in Chapters 3, 4 and 5, we will go on to solve the time-fractional diffusion
equation in Chapters 6 and 7. We use these solutions to investigate the re-
lationship between the fractional diffusion equation, the standard diffusion
equation and the standard wave equation. In fact we will show that in the
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Figure 1.2: The fractal Weierstrass function. After [17].

time-fractional fractional diffusion equation reduces to the diffusion equation
and the wave equation when we consider α = 1 and α = 2 respectively.

Some important mathematical properties are outlined in Chapter 2. This
chapter can be read in sequence or referred to when needed.

1.1 Introduction to Fractional Derivatives

In standard calculus we consider derivatives of order n (where n is any inte-
ger),

df(t)

dt
,
d2f(t)

dt2
,
d3f(t)

dt3
, . . . .

It sometimes makes sense to extend the definition of the derivatives to the
integrals, where −n refers to the nth anti-derivative and f (0) refers to the
original function.

Fractional calculus considers the case where n is not necessarily an inte-

ger. The meaning of a half derivative d1/2f(t)

dt1/2
was first discussed in 1695 by

Leibniz in a letter to L’Hôpital during the time he was developing calculus,
positing that it was “...an apparent paradox, from which one day useful con-
sequences will be drawn,” [4].

In the same way that we consider xn for integer powers to be n repeated
multiplications of x, we can intuitively think of dnf(t)

dtn
as being n repeated
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derivatives of f(t). We also understand – and indeed can exactly calculate –

x
7
8 without considering the physical implication of multiplying x repeatedly

7
8

times. In a similar way, we can perform α-order integrals and derivatives
for any non-integer α even though it is difficult to think about the geomet-
rical or conceptual interpretation of fractional derivatives. In fact, although
these fractional calculus operations are consistent for rational α (in that the
1
2
-order derivative applied twice results in the first derivative), the term “frac-

tional” here is actually a misnomer as we can consider any real α.

1.1.1 The Riemann-Liouville Fractional Integrals and
Derivatives

The Cauchy formula for repeated integration provides a method for perform-
ing n repeated integrals of the same function in a single step where n is any
positive integer. If we denote the nth repeated integral by the−nth derivative,
Cauchy’s formula is

d−nf(t)

dt−n
=

∫ t

0

∫ τ1

0

...

∫ τn−1

0

f(τn) dτn... dτ2 dτ1

=
1

(n− 1)!

∫ t

0

f(τ)(t− τ)n−1 dτ (1.3)

for n = 1, 2, 3, . . .. For a proof of result (1.3), see Theorem A.1 in Appendix
A.

Riemann and Liouville generalised the Cauchy theorem for repeated inte-
gration to hold for non-integer order integrals. In the Riemann-Liouville
definition for a fractional integral the (n − 1)! term in (1.3) is replaced by
the Gamma function, the continuous generalisation of the factorial function
on the positive reals.

Recall that the floor function is defined such that bxc is the largest integer

less than or equal to x. For example, if x =
3

2
, bxc = 1; if x = −3

2
, bxc = −2.

Definition 1.1 (The Riemann-Liouville fractional integral). Assuming f(t) :
R→ R is integrable, let

d−βf(t)

dt−β
=

1

Γ(β)

∫ t

0

f(τ)

(t− τ)−β+1
dτ

for β > 0, where Γ(σ) =
∫∞

0
yσ−1e−y dy.
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Note that this definition can be generalised to an arbitrary lower limit of in-
tegration. For the case of a lower limit of negative infinity, see Appendix C.
The Riemann-Liouville fractional integral can also be generalised to higher
dimensions by the Riesz potential (see [19, p.181]).

This definition of a fractional integral was combined with an integer-order
derivative to formulate a definition of a Riemann-Liouville fractional deriva-
tive.

Definition 1.2 (The Riemann-Liouville fractional derivative). Let α > 0 be
given and set m = bαc + 1. Assuming f(t) is integrable and m + 1 times
continuously differentiable, let

dαf(t)

dtα
=

dm

dtm

(
d−(m−α)f(t)

dt−(m−α)

)
=

1

Γ(m− α)

dm

dtm

(∫ t

0

f(τ)

(t− τ)α−m+1
dτ

)
. (1.4)

To perform this fractional integral first the (m−α)-order Riemann-Liouville
fractional integral is computed (note that m − α > 0), followed by an mth-
order derivative, where m is an integer.

Generalisation to non-integer orders

The Riemann-Liouville fractional derivative can be used to calculate the α-
order derivative of a given function for any real α. For example, let f(t) = t.
We can calculate the derivative for α = 1

2
which gives m = bαc + 1 = 1, so

that

d
1
2f(t)

dt
1
2

=
1

Γ
(

1
2

) d
dt

∫ t

0

(t− τ)−
1
2 τ dτ

=
1

Γ
(

1
2

) d
dt

[
−2

3
(t− τ)

1
2 (2t+ τ)

]t
0

=
1√
π

d

dt

(
4

3
t
3
2

)
=

2√
π
t
1
2 .

The function f(t) = t along with its fractional (α = 1
2
) derivative and first

derivative are plotted in Figure 1.3.
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Figure 1.3: Riemann-Liouville derivatives of f(t) = t with α = 0, 1
2
, 1.

Reduction to integer-order derivatives

The Riemann-Liouville fractional derivative exactly reduces to a standard
derivative when α is a positive integer. For example, consider the first and
second derivatives of f(t) = t. For the first derivative, set α = 1, so m =
bαc+ 1 = 2, and

df(t)

dt
=

1

Γ(1)

d2

dt2

(∫ t

0

(t− τ)0τ dτ

)
=

d2

dt2

(
t2

2

)
=

d

dt
(t)

= 1.
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We can calculate the second derivative in the same manner: with α = 2,
m = bαc+ 1 = 3, and

d2f(t)

dt2
=

1

Γ(1)

d3

dt3

(∫ t

0

(t− τ)0τ dτ

)
=

d3

dt3

(
t2

2

)
=

d2

dt2
(t)

= 0.

In fact we see that for any integer-valued α, m = bαc + 1 = α + 1 which
implies

1

Γ(m− α)
=

1

Γ(1)
= 1,

and

dm

dtm

∫ t

0

f(τ)

(t− τ)α+1−m dτ =
dα+1

dtα+1

∫ t

0

f(τ) dτ

=
dαf(t)

dtα
.

Thus we see that for any α ∈ Z,

1

Γ(m− α)

dm

dtm

(∫ t

0

f(τ)

(t− τ)α−m+1
dτ

)
=
dαf(t)

dtα
,

the standard integer-order derivative.

1.1.2 The Caputo Fractional Derivative

There are a number of definitions of fractional derivatives, and the choice of
which form to use depends on the problem. See Chapter 2 for an outline of
some properties which may govern this choice. One alternative definition to
the Riemann-Liouville fractional derivative we will consider in this thesis is
that of Caputo.

Recall that in order to calculate the Riemann-Liouville fractional derivative
a fractional integral is performed followed by an integer-order derivative. In
the Caputo definition, however, an integer-order derivative is taken followed
by a Riemann-Liouville integral, therefore a new fractional integral definition
does not need to be established before this result.
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Definition 1.3 (The Caputo fractional derivative). Let α > 0 by given, and
set m = bαc + 1. Assume f(t) is m times continuously differentiable. The
Caputo fractional derivative is given by

dαf(t)

dtα
=

1

Γ(m− α)

∫ t

0

f (m)(t)

(t− τ)α+1−m dτ, (1.5)

where f (m) denotes the mth-order derivative.

Generalisation to non-integer orders

Similarly to Riemann-Liouville fractional derivatives, Caputo fractional deriva-
tives can be used for any real α > 0. For example, we calculate the derivative
with α = 1

2
for f(t) = t. Using m = bαc+ 1 gives

d
1
2

dt
1
2

(f(t)) =
1

Γ(1
2
)

∫ t

0

d

dt
(t)(t− τ)−

1
2 dτ

=
1√
π

∫ t

0

(t− τ)
1
2 dτ

=
1√
π

[
−2(t− τ)

1
2

]t
0

=
2√
π
t
1
2

Notice that this is the same result achieved in Section 1.1.1 by calculating
the Riemann-Liouville fractional derivative of f(t) = t, as we would expect.
In general taking Riemann-Liouville and Caputo fractional derivatives give
the same resulting function, except when taking the derivative of a constant.
Caputo fractional derivatives of a constant are always zero; however the
Riemann-Liouville definition is equal to [19, p. 81]

dα

dtα
(c) =

ct−α

Γ(1− α)
.

Reduction to integer-order derivatives

The reduction of Caputo fractional derivatives to integer orders follows closely
that of Riemann-Liouville fractional derivatives. For any integer-valued α >
0, we see that m = bαc+ 1 = α + 1 so that

Γ(m− α) = Γ(1) = 1.
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We also have that∫ t

0

dm

dtm
(f(t))(t− τ)m−α−1 dτ =

∫ t

0

dα+1

dtα+1
(f(t))(t− τ)0 dτ

=
dα

dtα
(f(t)).

Therefore for any α ∈ Z+, we have

1

Γ(m− α)

∫ t

0

f (m)(t)

(t− τ)α+1−m dτ =
dαf(t)

dtα
,

the standard integer-order derivative.
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Chapter 2

Mathematical Background

In this chapter we will introduce some mathematical background which will
be referred to later in the thesis. We first introduce the three transform meth-
ods used in the thesis: Laplace, Fourier and finite sine transforms. We then
go on to introduce two special functions used in the field of fractional calculus,
and then derive formulae for the Laplace transforms of the Riemann-Liouville
and Caputo fractional derivatives. This chapter will not only introduce these
topics, but also provide some intuition as to when and why these methods
are employed. See Refs. [14] and [19] for further discussion on these topics.

2.1 Transforms

2.1.1 The Laplace Transform

The Laplace transform is used frequently in the derivation of solutions to
differential equations. This transform is used because it simplifies systems
from integer-order derivatives and integrals to an algebraic form. The Laplace
transform is used in a similar way in the field of fractional calculus.

Definition 2.1 (The Laplace transform). Let f(t) be a piecewise continuous
function of a real variable (t ≥ 0) satisfying the upper bound limt→∞ |f(t)| ≤
eat for some real finite a. The Laplace transform of the function f(t) into a
function of the Laplace variable s is defined as

F (s) = L (f(t)) =

∫ ∞
0

f(t)e−st dt, (2.1)

where F (s) = L(f(t)).
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Definition 2.2 (The Laplace inversion formula). The Laplace inversion for-
mula converts a Laplace transformed function into the original equation in
the time-domain by the following line integral:

f(t) = L−1 (F (s)) =
1

2πi

∫ c+i∞

c−i∞
F (s)est ds, (2.2)

where c = Re(s) lies to the right of the real part of all of the singularities of
F (s).

Theorem 2.1 (The Laplace transform of a first derivative). Taking the
Laplace transform of the first derivative of the continuous function f(t) which
has a piecewise continuous first derivative f ′(t) gives

L (f ′(t)) = sF (s)− f(0). (2.3)

Proof. By the definition of a Laplace transform and integrating by parts, we
have

L (f ′(t)) =

∫ ∞
0

f ′(t)e−st dt

= lim
t→∞

e−stf(t)− f(0) + sF (s).

By assumption, limt→∞ |f(t)| ≤ eat for some real finite value a. It follows
that limt→∞ e

−stf(t) = 0 and thus

L (f ′(t)) = sF (s)− f(0).

Theorem 2.2 (The Laplace transform of an integer-order derivative). Tak-
ing the Laplace transform of an nth order derivative (where n is a positive
integer) of the function f(t) gives

L
(
f (n)(t)

)
= snF (s)−

n∑
k=0

skf (n−k−1)(0). (2.4)

Proof. By the definition of a Laplace transform, we have

L
(
f (n)(t)

)
=

∫ ∞
0

f (n)(t)e−st dt.
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By integrating the right hand side by parts we obtain

L
(
f (n)(t)

)
=
[
f (n−1)(t)e−st

]∞
0

+ s

∫ ∞
0

f (n−1)(t)e−st dt.

Integrating the last term by parts again gives us

L
(
f (n)(t)

)
=
[
f (n−1)(t)e−st

]∞
0

+ s
[
f (n−2)(t)e−st

]∞
0

+ s2

∫ ∞
0

f (n−2)(t)e−st dt.

By continuing to iterate this integration by parts, and applying the Laplace
transform of a first derivative from Theorem 2.1 for the final term, we obtain

L
(
f (n)(t)

)
= sn

∫ ∞
0

f(t)e−st dt+
n−1∑
k=0

sk
[
f (n−k−1)(t)e−st

]∞
0

= snF (s) +
n−1∑
k=0

sk
(

lim
t→∞

e−stf (n−k−1)(t)− f (n−k−1)(0)
)
.

By assumption, limt→∞ |f(t)| ≤ eat for some real finite value a. It follows
that limt→∞ e

−stf(t) = 0 and thus

L
(
f (n)(t)

)
= snF (s)−

n−1∑
k=0

skf (n−k−1)(0).

Definition 2.3 (The Laplace transform of a convolution integral). The
Laplace transformation of a convolution

f(t) ∗ g(t) =

∫ t

0

f(t− τ)g(τ) dτ =

∫ t

0

f(τ)g(t− τ) dτ

is of the form
L (f(t) ∗ g(t)) = F (s)G(s). (2.5)

Theorem 2.3 (Laplace transform of the Dirac delta function). The Laplace
transform of the Dirac delta function δ(t− a) is given by

L (δ(t− a)) =

∫ ∞
0

e−stδ(t− a) dt

= eas. (2.6)
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2.1.2 The Fourier Transform

The Fourier transform is used in solution methods for differential equations
to transform the problem from the space domain into the wavelength domain.

Definition 2.4 (The Fourier transform). Let f be an integrable, piecewise
continuous function. The Fourier transform of f is given by

f̂(k) =

∫ ∞
−∞

f(x)e−2πixk dx. (2.7)

There are many definitions of a Fourier transform, but the form used in this
thesis is given by (2.7).

Definition 2.5 (The inverse Fourier transform). Let f̂ be an integrable,
piecewise continuous function. The Inverse Fourier transform of f̂ is given
by

f(x) =

∫ ∞
−∞

f̂(x)e2πixk dk. (2.8)

Theorem 2.4 (The Fourier transform of an integer-order derivative). The
Fourier transform of the nth order derivative of a function f where n is a
positive integer is given by

F
(
dnf(x)

dxn

)
= inkF (f(x)) . (2.9)

For a proof of this result see Ref. [14, p. 573].

Definition 2.6 (The Fourier transform of a convolution integral). The Fourier
transformation of a convolution

f(x) ∗ g(x) =

∫ x

0

f(x− y)g(y) dy =

∫ x

0

f(y)g(t− y) dy,

is of the form
F (f(x) ∗ g(x)) = f̂(k)ĝ(k). (2.10)

Theorem 2.5 (The Fourier transform of the Dirac delta function). The
Fourier transform of the Dirac delta function δ(t− a) is given by

F (δ(t− a)) =

∫ ∞
−∞

e−2πixkδ(t− a) dx

= 1. (2.11)
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2.1.3 The Finite Sine Transform

The finite sine transform is particularly useful when considering boundary
value problem with homogeneous end conditions on the domain c1 < x < c2.

Definition 2.7 (The finite sine transform). Let f(x) be a piecewise contin-
uous function on the interval 0 < x < `. The finite sine transform of f(x) is
given by

f̄(k) = S (f(x)) =

∫ `

0

f(x) sin

(
kxπ

`

)
dx. (2.12)

Definition 2.8 (The inverse finite sine transform). To recover the function
f(x) from f̄(k), we perform the summation

f(x) = S−1
(
f̄(k)

)
=

2

`

∞∑
n=1

f̄(k) sin

(
kxπ

`

)
. (2.13)

Notice that this is just the Fourier sine expansion of a function f(x). In the
context of this thesis it makes sense to refer to it as a transform.

2.2 Special functions

Two special functions which arise often in the field of fractional calculus are
the Gamma function and the Mittag-Leffler function. We introduce these
here, and highlight some of their properties which are utilised in this thesis.

2.2.1 Gamma function

The Gamma function is the continuous extension of the factorial function.
While the factorial function n! holds for all integers n, the Gamma function
Γ(z) is defined for all non-negative real z. For positive integer values, the
Gamma function reduces exactly to the factorial function according to the
relationship Γ(n+ 1) = n! .

Definition 2.9 (The Gamma function).

Γ(z) =

∫ ∞
0

tz−1e−t dt, (2.14)

where z ∈ C and Re(z) > 0.
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Theorem 2.6 (Euler’s reflection formula).

Γ(1− α) =
π

sin(απ)Γ(α)
. (2.15)

The proof of this result does not give insights important to this thesis, but
is nevertheless provided in Appendix B.

2.2.2 The Mittag-Leffler Function

The Mittag-Leffler function is a generalisation of the exponential function.

Definition 2.10 (The two-parameter Mittag-Leffler function). [19, p. 17].
Assume α > 0, β > 0. The Mittag-Leffler function is given by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
. (2.16)

It follows from the definition of the Mittag-Leffler function and the Taylor
series expansions of the exponential, hyperbolic cosine and cosine functions
that

E1,1(z) =
∞∑
k=0

zk

Γ(k + 1)
=
∞∑
k=0

zk

k!
= ez

E2,1(z2) =
∞∑
k=0

z2k

Γ(2k + 1)
=
∞∑
k=0

z2k

(2k)!
= cosh(z)

E2,1(−z2) =
∞∑
k=0

(−1)k(z)2k

Γ(2k + 1)
=
∞∑
k=0

(−1)kz2k

(2k)!
= cos(z).

These properties will be applied in later chapters of this thesis.

Note that the notation Eα(z) is used for Eα,1(z), and is the single-parameter
definition of the Mittag-Leffler function.

Let us define E∗(t), a modified Mittag-Leffler function as

E∗(t) = tβ−1Eα,β(atα).

Theorem 2.7 (Laplace transform of the modified Mittag-Leffler function
E∗(t)). The Laplace transform of E∗(t) is given by

L(E∗(t)) = L
(
tβ−1Eα,β(atα)

)
=

1

sβ − asβ−α
. (2.17)
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Proof. The Laplace transform of E∗(t) is given by

L(E∗(t)) = L
(
tβ−1Eα,β(atα)

)
=

∫ ∞
0

e−sttβ−1Eα,β(atα) dt

=

∫ ∞
0

e−sttβ−1

∞∑
k=0

(a)ktk

Γ(αk + β)
dt.

Changing the order of summation and integration, we find

L (E∗(t)) =
∞∑
k=0

ak

Γ(αk + β)

∫ ∞
0

e−sttαk+β−1 dt.

By making the substitution q = st, we find

L (E∗(t)) =
∞∑
k=0

ak

Γ(αk + β)

∫ ∞
0

e−qqαk+β−1s−αk−β dq.

Applying the definition of the Gamma function gives us

L (E∗(t)) =
∞∑
k=0

ak

Γ(αk + β)
s−αk−βΓ(αk + β)

=
∞∑
k=0

aks−αk−β.

This geometric sum gives

L (E∗(t)) = s−β
∞∑
k=0

(as−α)k

= s−β
1

1− as−α

=
1

sβ − asβ−α
.

Note that the existence of the Laplace transform requires s > |a| 1α .
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2.3 Laplace Transforms of Fractional Integrals

and Derivatives

As will be shown in this section, taking a Laplace transform reduces the com-
plexity of both Riemann-Liouville and Caputo fractional derivatives. While
many definitions of fractional derivatives exist [19], the persistence of these
two definitions is, at least in part, due to their simplicity in Laplace space.

2.3.1 The Laplace transforms of Riemann-Liouville Frac-
tional Integrals and Derivatives

Theorem 2.8 (The Laplace transform of a Riemann-Liouville fractional
integral). For β > 0 and f with L(f) = F , there holds:

L
(
d−βf(t)

dt−β

)
= s−βF (s) (2.18)

Proof. Notice that the Riemann-Liouville fractional integral,

d−βf(t)

dt−β
=

1

Γ(β)

∫ t

0

f(τ)

(t− τ)−β+1
dτ,

is in the form of a convolution. Let us define a function

ξβ(t) =
tβ−1

Γ(β)
,

so that the Riemann-Liouville fractional integral is expressed as a convolution

d−βf(t)

dt−β
= ξβ(t) ∗ f(t).

The Laplace transform of ξ(t) is given by

L(ξβ(t)) =

∫ ∞
0

e−stξβ(t) dt

=
1

Γ(β)

∫ ∞
0

e−sttβ−1 dt

=
s−βΓ(β)

Γ(β)

= s−β.
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Thus we see that the Laplace transform of the Riemann-Liouville fractional
integral is

L
(
d−βf(t)

dt−β

)
= L (ξβ(t) ∗ f(t))

= L(ξβ(t))L(f(t))

= s−βF (s).

This matches the standard integer-order transform for β = 1, 2, 3 . . ..

So we see that taking a Laplace transform reduces a Riemann-Liouville frac-
tional integrals to a Laplace transform of the original function. This simpli-
fication will motivate the direction of many of the derivations in this thesis.

Theorem 2.9 (The Laplace transform of the Riemann-Liouville fractional
derivative). Given α > 0, set m = bαc+ 1, and

L
(
∂αf(t)

∂tα

)
= L

(
1

Γ(m− α)

dm

dtm

∫ t

0

f(τ)

(t− τ)m−α−1
dτ

)
= sαF (s)−

m−1∑
k=0

sk
∂α−k−1f(0)

∂tα−k−1
(2.19)

Proof. This proof follows that in Ref. [19, p. 105]. Let

g(t) =
d−(m−α)f(t)

dt−(m−α)

=

(
1

Γ(m− α)

∫ t

0

f(τ)

(t− τ)m−α−1
dτ

)
,

so that

dαf(t)

dtα
=
dmg(t)

dtm
,

where m− 1 ≤ α < m. Taking the Laplace transform of both sides, we see

L
(
dαf(t)

dtα

)
= L

(
dmg(t)

dtm

)
.

We know from Theorem 2.2 that the Laplace transform of an integer order
derivative is gives us

L
(
dαf(t)

dtα

)
= smG(s)−

m−1∑
k=0

skg(m−k−1)(0).
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We can evaluate G(s) by Theorem 2.8 to find

G(s) = L (g(t))

= s−(m−α)F (s),

so

smG(s) = sαF (s),

giving the first term in 2.19. We also have that

g(m−k−1)(t) =
dm−k−1g(t)

dtm−k−1

=
dm−k−1

dtm−k−1

(
d−(m−α)f(t)

dt−(m−α)

)
=
dα−k−1f(t)

dtα−k−1
.

Therefore we see that

L
(
dαf(t)

dtα

)
= sα −

m−1∑
k=0

sk
dα−k−1f(0)

dtα−k−1
.

We can see here that in order to impose initial conditions with Riemann-
Liouville fractional derivatives, we must take many non-integer (α − k − 1
for k = 0, 1, 2....m− 1) order fractional derivatives of the initial conditions.

2.3.2 Laplace Transform of Caputo Fractional Deriva-
tives

Theorem 2.10 (Laplace transform of Caputo fractional derivative).

L
(
dαf(t)

dtα

)
=

∫ ∞
0

e−st
(

1

Γ(m− α)

∫ t

0

f (m)(t)

(t− τ)α+1−m dτ

)
dt

= sαF (s)−
m−1∑
k=0

sα−k−1f (k)(0) (2.20)
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Proof. This proof follows that in Ref. [19, p. 106]. Let

g(t) =
dmf(t)

dtm
,

so that

dαf(t)

dtα
=
d−(m−α)g(t)

dt−(m−α)
,

and thus

L
(
dαf(t)

dtα

)
= L

(
d−(m−α)g(t)

dt−(m−α)

)
.

By Theorem 2.8, we have

L
(
dαf(t)

dtα

)
= s−(m−α)G(s)

= s−(m−α)L
(
dmf(t)

dtm

)
.

Now using Theorem 2.2 for the Laplace transform of integer-order derivatives
gives

L
(
dαf(t)

dtα

)
= sαF (s)−

m−1∑
k=0

sα−k−1f (k)(0).

Notice that this expression includes only integer-order derivatives of the orig-
inal function f(t) evaluated at t = 0. This means that no calculation of frac-
tional derivatives is required in order to impose initial conditions when using
the Caputo definition of fractional derivatives. For this reason, the Caputo
definition is often used to solve fractional differential equations which have
initial and boundary conditions (see, for example, Ref. [2] and Chapter 6).
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Chapter 3

Standard Diffusion

In this chapter we investigate a method that shows that the microscopic
dynamics of a random walk can be described by a single macroscopic equa-
tion. We investigate the links between jump probability density functions
and diffusion equations in the context of a continuous time, continuous space
random walk. That is, we consider a walker that moves freely in space and
can make a jump at any time. We first establish how the probability of find-
ing such a walker at a particular place at a particular time can be described
by the standard diffusion equation. We then consider in Chapters 4 and 5
cases of anomalous movement leading to a fractional diffusion equation, with
a fractional derivative replacing either the time- or space-partial derivative.

3.1 Random walk models

First we introduce three potential models for random walks. In this thesis
we will only consider the last of these cases; however it is important to note
that different (and, in particular, discrete) microscopic equations could be
examined to describe the macroscopic behaviour of any of the other walkers.

3.1.1 Discrete time, discrete space random walk

One framework for the movement of a random walker is to consider moving
at discrete jump lengths ∆x at discrete time steps ∆t. This problem, first
posed by Pólya in 1919 [12], is that of a walker on a d dimensional regular
lattice who jumps to one of its direct neighbours at discrete time periods (see
Figure 3.1).

In the one-dimensional case, the probability of the walker being found at
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Figure 3.1: A discrete time, discrete space random walk on a two dimensional
lattice. Each jump is of length ∆x and occur at time 0, t + ∆t, t + 2∆t,
t+ 3∆t... After [16].

lattice site x at time t+ ∆t satisfies the relation [16]

ρx(t+ ∆t) =
1

2
ρx−1(t) +

1

2
ρx+1(t).

3.1.2 Continuous time, discrete space random walk

A continuous time, discrete space random walk maintains the discrete spac-
ing of the jump lengths, but draws the waiting time for each jump indepen-
dently from a probability density function, as shown in Figure 3.2. Klafter
et al. perform a detailed derivation of diffusion equations for continuous
time random walks which closely follows the derivation for continuous time,
continuous space random walks covered in the following sections [13].

3.1.3 Continuous time, continuous space random walk

Continuous time, continuous space random walks (see Figure 3.3) draw both
their jump length and their waiting time from probability density functions.
For convenience, we will call these walkers continuum random walkers, or
CRW. It is these random walks that we will consider in the following sections.
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Figure 3.2: A continuous time random walk on a two dimensional lattice.
Each jump is of length ∆x and occur at any time. The waiting circles at
lattice sites indicate the time the walker remains at that site. After [16].

3.2 The continuum random walk model

In this section we aim to find a macroscopic equation to describe the micro-
scopic dynamics of a random walker following Ref. [16]. That is, we will
find an expression ρ(x, t) that gives us the probability of finding the random
walker at the location (x, x+ dx) at the time (t, t+ dt). This function ρ(x, t)
can be used to describe the movements of the walker on the macroscopic
scale, rather than by considering the length, direction and waiting time for
every jump it makes. We will then go on to show that this ρ(x, t) solves the
fractional diffusion equation in the long-time, long-distance limit.

The fundamental microscopic way to describe a random walker is to consider
how long the walker waits at a site before making another jump, and how
far it jumps when it does. These microscopic movements of a random walker
can be described by the jump probability density function, denoted ψ(x, t).

Here we are considering a CRW whose every jump has a length drawn
from the pdf λ(x) and waiting time drawn from the pdf w(t). These pdfs
are defined as followed: λ(x) gives the probability of jumping the distance
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Figure 3.3: A continuous time, continuous space random walk. The jump
length and waiting time are both drawn from probability density functions
independently for each jump. After [16].

(x, x + dx), and w(t) gives the probability of waiting between (t, t + dt) be-
tween two successive jumps.

We will consider the case where these jump length and waiting time pdfs
are uncorrelated. That is that the distance jumped has no bearing on the
waiting time prior to the jump and there is no maximal distance a walker
can jump in any time. This means that the jump pdf ψ(x, t), describing the
probability of jumping the distance (x, x+ dx) at (t, t+ dt), is given by

ψ(x, t) = w(t)λ(x). (3.1)

In order to describe the probability ρ(x, t) we must first consider the proba-
bility that the walker has just, at time t, arrived at site x in a single jump
from x′ at t′. Note the distinction between this and ψ(x, t) – here we are
considering the probability of arriving at the location x whereas previously
we were considering the probability of making a jump of length x. This
probability is given by

η(x, t) =

∫ ∞
−∞

∫ t

0

η(x′, t′)ψ(x− x′, t− t′) dt′ dx′ + δ(x)δ(t). (3.2)
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Note that η(x′, t′) describes the probability of having arrived at some previous
location x′ at some previous time t′. It is with this term that we incorporate
the probabilities of all previous jumps. Notice that η(x′, t′) is multiplied by
ψ(x− x′, t− t′). This term gives us the probability of jumping the required
distance from a previous location x′ to arrive at x at the required time. These
terms are integrated over all of x′ and t′ so that in the calculation of η(x, t)
we consider a jump from all possible previous sites and all possible previous
times. The Dirac delta functions in η(x, t) allow us to include the initial
conditions, ensuring a probability of one where the walker is released at the
initial time.

Since we are working towards an expression for the probability of finding the
walker at x at time t, we must also consider the probability that the walker
jumped to this site some time ago and still remains. We call this the survival
probability – the probability distribution of surviving at a site at time t (that
is, the probability of not having jumped away in the time (0, t)), which is
given by

φ(t) = 1−
∫ t

0

w(τ) dτ. (3.3)

Using the probability of having arrived at x at t′ (3.2) and the probability of
not having jumped away in (t′, t) (3.3), we can obtain the desired probability
density function ρ(x, t) by

ρ(x, t) =

∫ t

0

η(x, t′)φ(t− t′) dt′. (3.4)

This ρ(x, t) expression includes the complicated integral expression η(x, t′).
By taking a Laplace transform of ρ(x, t), we can instead find an expression
that is completely algebraic in the Laplace variable s. Since ρ(x, t) is a convo-
lution in t, this Laplace transform is a natural step to simplify this equation.

The Laplace transform (2.5) of ρ(x, t) is given by

P (x, s) = L(ρ(x, t))

= L (η(x, t) ∗ φ(t))

= Φ(s)H(x, s),

where Φ(s) = L(φ(t)) is the Laplace transform of φ(t), and H(x, s) =
L(η(x, t)) is the Laplace transform of η(x, t).
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The Laplace transform of φ(t) is given by

Φ(s) = L(φ(t))

=

∫ ∞
0

(
1−

∫ t

0

w(τ) dτ

)
e−st dt

=

∫ ∞
0

e−st dt−
∫ ∞

0

(∫ t

0

w(τ) dτ

)
e−st dt

=
1

s
− W (s)

s

=
1−W (s)

s
. (3.5)

Notice that η(x, t) takes the form of a convolution of t. Thus we can per-
form the Laplace transformation of (3.2) using the properties of the Laplace
transform of a convolution (2.5) and of the Dirac delta function (2.6), giving

H(x, s) = L(η(x, t))

=

∫ ∞
−∞
L(η(x′, t))L(ψ(x− x′, t)) dx′ + δ(x)

=

∫ ∞
−∞

H(x′, s)Ψ(x− x′, s) dx′ + δ(x). (3.6)

We can use equations (3.5) and (3.6) to transform ρ(x, t) to P (x, s) which,
instead of relying on the integral formula (3.2) in the time domain, is algebraic
in the Laplace variable s. We have

P (x, s) = L(ρ(x, t))

= Φ(s)H(x, s)

=
1−W (s)

s
H(x, s). (3.7)

This equation also involves integrals with respect to x. In the same way that
taking the Laplace transform reduced the expression ρ(x, t) to being algebraic
in s, we can obtain an algebraic equation in the wavelength domain by taking
a Fourier transform of P (x, s). Thus we have

P̂ (k, s) = F(P (x, s))

=
1−W (s)

s
F(H(x, s))

=
1−W (s)

s
Ĥ(k, s), (3.8)
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(since the first term is independent of x).

We must take the Fourier transform of H(x, s) (which is itself the Laplace
transform of η(x, t))

Ĥ(k, s) = F(H(x, s))

= F
(∫ ∞
−∞

H(x′, s)Ψ(x− x′, s) dx′ + δ(x)

)
= F

(∫ ∞
−∞

H(x′, s)Ψ(x− x′, s) dx′
)

+ 1.

So by taking the Fourier transform of the resulting convolution integral we
find that

Ĥ(k, s) = F(H(x, s))

= F (H(x, s))F (Ψ(x, s)) + 1

= Ĥ(k, s)Ψ̂(k, s) + 1.

Solving for Ĥ(k, s) gives

Ĥ(k, s) =
1

1− Ψ̂(k, s)

By substituting this Fourier transformed equation into (3.8), we have the
explicit expression for

P̂ (k, s) =
1−W (s)

s

1

1− Ψ̂(k, s)
. (3.9)

We have transformed ρ(x, t) into an algebraic form in Fourier-Laplace space,
which is much easier to work with. Our expression is solely in terms of the
Laplace transforms of the fundamental jump pdfs w(t) and λ(x), rather than
being in terms of the integral expression η(x, t). This dependence on the
jump pdfs means we can vary these fundamental microscopic descriptions
of the movement of the random walker and observe the effect this has on
the macroscopic behaviour described by P̂ (k, s). In the following section,
we will consider densities with finite moments (in particular Gaussian and
Poissonian distributions) and show that these microscopic behaviours of a
random walker lead to the standard diffusion equation on a macroscopic
scale. In Chapters 4 and 5 we will consider jump pdfs with infinite moments
and see that this leads to the fractional diffusion equation on the macroscopic
scale.
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3.3 Standard diffusion

Our aim is to show that a random walker moving with a Poissonian wait-
ing time probability density function w(t) and a Gaussian jump length pdf
λ(x) will be distributed according to the standard diffusion equation. This
derivation follows that of Metzler and Klafter in Ref.[16, p. 17].

Recall that we are considering an uncorrelated jump density,

ψ(x, t) = w(t)λ(x).

First let us consider a Poissonian waiting time pdf

w(t) =
1

τ
e−

t
τ ,

where τ > 0. Using integration by parts, we find that the characteristic
waiting time of this pdf is given by

〈t〉 =

∫ ∞
0

w(t)t dt

=

∫ ∞
0

t

τ
e−

t
τ dt

= lim
R→∞

∫ R

0

t

τ
e−

t
τ dt

= τ,

which is finite. By performing a Laplace transform of w(t) and taking a
Taylor series approximation of the resulting equation, we can find the small
s behaviour of the Laplace transform of this pdf. Thus

W (s) = L(w(t))

=

∫ ∞
0

e−stτ−1e−
t
τ dt

=
1

τs+ 1

= 1− sτ +O(s2)

≈ 1− sτ. (3.10)

The motivations for using an approximation of this form will become clear
later in our derivations.
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Consider also a Gaussian jump length given by

λ(x) =
1

(4πc2)1/2
e−

x2

4c2 , (3.11)

where c > 0. This pdf has the variance

〈
x2
〉

=

∫ ∞
0

x2λ(x) dx

=
1√

4πc2

∫ ∞
0

x2e−
x2

4c2 dx

= c2,

which is finite.

We can perform a Fourier transform and again find the corresponding Taylor
series approximation to find the small wavenumber behaviour of this jump
length distribution:

F(λ(x)) = λ̂(k)

=

∫ ∞
−∞

1√
4πc2

e−
x2

4c2 e−2πixk dx

=
e−c

2k2

√
2π

∼ 1− c2k2 +O(k4)

≈ 1− c2k2. (3.12)

The exact form of our choices of w(t) and λ(x) were not important here. In
fact, although we have used the example of a Poissonian waiting time and
a Gaussian jump length pdf, any uncorrelated probability density functions
leading to finite characteristic waiting time and variance of jump length will
have the same Laplace and Fourier transforms in the small k, small s limit,
as shown by Klafter [13]. We can therefore assume any such waiting time and
jump length pdfs have been considered and continue with the same deriva-
tion.

We have found the asymptotic behaviour of our jump length and waiting time
distributions in Fourier and Laplace space. These can be installed directly
into (3.9), however we also require the jump pdf ψ(x, t) in Fourier-Laplace
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space. Using our asymptotic pdf behaviours, we have

Ψ̂(k, s) = W (s)λ̂(k) (3.13)

Ψ̂(k, s) ≈ 1− c2k2 − sτ,

ignoring cross terms. By substituting (3.10), (3.12) and (3.13) into the
Laplace and Fourier transformed ρ(x, t) (3.9), we obtain

P̂ (k, s) =
1−W (s)

s

1

1− Ψ̂(k, s)

≈ sτ

s

1

c2k2 + sτ

=
1

K1k2 + s
(3.14)

where K1 = c2

τ
> 0.

Notice that this is the Fourier and Laplace transformed Gaussian propagator

ρ(x, t) =
1√

4πK1t
e
− x2

4K1t . (3.15)

To see the significance of P̂ (k, s), we will show that it is exactly the solution
to the standard diffusion equation

∂ρ(x, t)

∂t
= K1

∂2ρ(x, t)

∂x2
.

First we take the Laplace transform of the fractional diffusion equation, using
the definition of the Laplace transform of a first-order derivative (2.3). We
find that

L
(
∂ρ(x, t)

∂t

)
= L

(
K1

∂2ρ(x, t)

∂x2

)
,

i.e.

sP (x, s)− 1 = K1
∂2P (x, s)

∂x2
.

Now, using the definition of a Fourier transform of an integer-order derivative
(2.9) we find

F (sP (x, s)− 1) = F
(
K1

∂2P (x, s)

∂x2

)
sP̂ (k, s)− 1 = −K1k

2P̂ (k, s).
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Solving for P̂ (k, s), we have

P̂ (k, s)(K1k
2 + s) = 1

P̂ (k, s) =
1

K1k2 + s
.

Here we see that the Fourier-Laplace transformed probability of finding the
walker at site x at time t solves, in the small s, small k limit, the standard
diffusion equation.

3.4 Conclusion

In this chapter we have considered a continuous time, continuous space ran-
dom walker described by a jump distribution with a finite characteristic wait-
ing time and jump length variance. We showed that in the long time, long
space limit the distribution of the random walker is described by the standard
diffusion equation. This derivation shows the link between the microscopic
rules governing each jump of a random walker and the macroscopic distribu-
tions of the entire random walk. In the next two chapters, we consider how
varying the fundamental jump density functions w(t) and λ(x) will change
the macroscopic equations P̂ (k, s) and the form of the diffusion equation.
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Chapter 4

Long Rests

In Chapter 3 we found an expression for the Fourier-Laplace transformed
probability P̂ (k, s) of finding a continuous time, continuous space random
walker at the site x at the time t. We went on to show that when we con-
sider a random walker with a finite mean waiting time and a finite jump
length variance P̂ (k, s) reduces to a form that, in the space-time domain,
solves the standard diffusion equation.

In this chapter we will consider a random walker with finite jump length
variance but with infinite mean waiting time. This means that the walker
can remain at its current site for anomalously long times. We follow a similar
derivation to that given in Chapter 3 to show that P̂ (k, s) in this case reduces
to a form that solves the time-fractional diffusion equation in the long-time,
long-distance limit.

4.1 Waiting time probability density function

with infinite mean

Our aim in this chapter is to consider a fat-tailed waiting time density which
admits a probability density function (pdf) with infinite mean. In this section
we will show that a density with the large t behaviour

w(t) ∼ Aα

(τ
t

)1+α

, (4.1)

with 0 < α < 1, τ ∈ R+ and Aα ∈ R, has an infinite first moment and that
it gives a Laplace transformed density with the small s behaviour

W (s) ∼ 1− (τs)α. (4.2)
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This density will then be used in Section 4.2 to motivate the use of the frac-
tional diffusion equation.

4.1.1 Infinite mean waiting time

First we must confirm that w(t) has an infinite mean. The mean is given by∫ ∞
0

w(t)t dt.

The convergence of this integral is governed by the integral∫ ∞
T

Aα

(τ
t

)1+α

t dt = Aατ
α+1

∫ ∞
T

1

tα
dt,

for some finite T > 0. As α < 1 the integral does not converge, therefore,
the pdf w(t) has an infinite mean waiting time.

4.1.2 Asymptotic behaviour

In order to show how changing the fundamental jump density w(t) changes
the macroscopic dynamics of the walker given by ρ(x, t), we will use the
anomalous waiting time pdf in our equation (3.9). This means we must find
the asymptotic behaviour of the Laplace transform of w(t). In this section
we will show that this anomalous waiting time pdf (4.1) has the asymptotic
behaviour (4.2).

Taking the Laplace transform of w(t) and integrating by parts, we find

W (s) = L(w(t))

=

∫ ∞
0

w(t)e−st dt

= lim
R→∞

[
e−st

(∫ t

0

w(τ) dτ − 1

)]t=R
t=0

+ s

∫ ∞
0

e−st
(∫ t

0

w(τ) dτ − 1

)
dt

= 1− s
∫ ∞

0

e−st
(∫ t

0

1− w(τ) dτ

)
dt.
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Recall that φ(t) = 1−
∫ t

0

w(τ) dτ . Thus

W (s) = 1− s
∫ ∞

0

e−stφ(t) dt

= 1− sΦ(s), (4.3)

where Φ(s) = L(φ(t)).

We now perform the Laplace transform of φ(t). By construction, we know

that
dφ(t)

dt
= −w(t). So we know by the behaviour of w(t) that

φ(t) ∼ −
∫
w(t) dt

∼ −
∫
Aα

(τ
t

)1+α

dt

=
Aατ

1+α

α

1

tα
,

=
βα
tα
, (4.4)

where βα = Aατ1+α

α
. We will use this to find the behaviour of the Laplace

transform of φ(t) required for (4.3). Note that although we are setting this
problem up to use the asymptotic behaviour of φ(t), we maintain a strict
equality at this point. The Laplace transform of φ(t) is given by

Φ(s) = L(φ(t))

=

∫ ∞
0

φ(t)e−st dt

=

∫ ∞
0

βα
tα
e−st dt︸ ︷︷ ︸
I

+

∫ ∞
0

(
φ(t)− βα

tα

)
e−st dt︸ ︷︷ ︸

II

. (4.5)

We will consider the first and second integrals of this expression separately
in the next two sections. We will then put these expressions together to form
the Laplace transform of φ(t) and use this to find the small s asymptotic be-
haviour of W (s) (see Section 4.1.2.3). We employ this non-standard method
of proving that W (s) ∼ 1 − (τs)α in order to provide a result which only
requires undergraduate calculus. A Tauberian theorem approach could also
be taken; for a discussion of this see Feller [8, p. 418].
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Our aim in the following sections will be to show that the behaviour of the
Φ(s) is dictated by the first term, I, and that the second term is bounded by
a constant or goes to zero more quickly than the first term.

4.1.2.1 Evaluating I

To evaluate I =

∫ ∞
0

βα
tα
e−st dt we make the subsititution q = st, giving

I =

∫ ∞
0

e−qφ

(
βαs

α

sα

)
dq

s

= sα−1βα

∫ ∞
0

q−αe−q dq.

Let δ = 1− α. From the definition of the Gamma function (2.14) we know∫ ∞
0

qδ−1e−q dq = Γ(δ).

Thus ∫ ∞
0

q−αe−q dq = Γ(1− α) (4.6)

=
π

sin(απ)Γ(α)
,

by Euler’s reflection formula (2.15). So we have

I = βαs
α−1Γ(1− α)

= βαs
α−1 π

sin(απ)Γ(α)

= K1s
α−1, (4.7)

where K1 =
βαπ

sin(απ)Γ(α)
.

4.1.2.2 Evaluating II

In this section we will find the asymptotic behaviour of the integral

II =

∫ ∞
0

e−st
(
φ(t)− βα

tα

)
dt. (4.8)
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Our aim here is to show that this integral is either bounded by a constant
or goes to zero as s vanishes more quickly than (4.7), thus ensuring it is
asymptotically small compared to sα−1.

Motivated by (4.4), let us assume that φ(t) has the asymptotic form

φ(t) ∼ βα
tα

+
∞∑
i=1

ci
tαi

for α < α1 < α2 < α3 . . .. These types of asymptotic forms are often assumed
(see, for example, Ref. [11]).

Now assume there exists a real T > 0 and a constant B ∈ R such that∣∣∣∣φ(t)− βα
tα

∣∣∣∣ < B

tα1
, (4.9)

for all t > T . We can use T as an integration limit to separate the integral
II into two regions and consider the behaviour of each term.

II =

∫ ∞
0

(
φ(t)− βα

tα

)
e−st dt

=

∫ T

0

(
φ(t)− βα

tα

)
e−st dt︸ ︷︷ ︸

II1

+

∫ ∞
T

(
φ(t)− βα

tα

)
e−st dt.︸ ︷︷ ︸

II2

(4.10)

Considering only the first term of (4.10), in which we the singularity is con-
tained, we find

|II1| =
∫ T

0

∣∣∣∣φ(t)− βα
tα

∣∣∣∣ e−st dt
≤
∫ T

0

|φ(t)| e−st dt+

∫ T

0

|βα|
tα

e−st dt.

Now since |φ(t)| e−st ≤ 1, we know that
∫ T

0
|φ(t)| e−st dt ≤ T . As βα > 0, we

see that

|II1| ≤ T +

∫ T

0

βα
tα
e−st dt

≤ T + βα

∫ T

0

t−α dt,
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As e−st ≤ 1 for s > 0. Since 0 < α < 1, the integral in the second term here
converges and can be calculated to give

|II1| < T +
βαT

1−α

1− α
= K2,

where K2 = T +
βαT

1−α

1− α
.

Now consider the II2 term of (4.10),
∫∞
T

(
φ(t)− βα

tα

)
e−st dt. By (4.9), we

know that

|II2| =
∫ ∞
T

∣∣∣∣φ(t)− βα
tα

∣∣∣∣ e−st dt (4.11)

<

∫ ∞
T

B

tα1
dt. (4.12)

We must now find the asymptotic behaviour of this integral, and show that
it is bounded either by a constant or by a function that disappears as s goes
to zero faster than (4.7). We will do this with two cases: the first where
α1 > 1 and then where α1 < 1.

First, consider the case where α1 > 1 (and thus the integral converges). We
find see that

|II2| <
∫ ∞
T

B

tα1
dt

=
B

(1− α1)Tα1−1

= K3.

Consider now the case where α1 < 1. In this case we need the term e−st in
Eq. (4.11) to ensure the integral converses. Making the substitution q = st
in (4.11) gives

|II2| <
∫ ∞
T

B

tα1
e−st dt

=

∫ ∞
sT

Bsα1

qα1
e−q

dq

s

=
Bsα1

s

∫ ∞
sT

e−q

qα1
dq.
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Notice that if we extend the domain of integration from [sT,∞) to [0,∞)
(thus increasing the domain by sT ) of this positive-valued integrand, we
increase the value of the integral. Thus

|II2| <
Bsα1

s

∫ ∞
0

e−q

qα1
dq.

By the definition of Γ(x) (2.14), we have

|II2| <
Bsα1

s
Γ(1− α1)

= K4s
α1−1,

where K4 = Γ(1− α1)B.

By bounding II1 by a constant and then considering the two cases of II2 we
have shown that

II < K2 +

{
K3 for α1 > 1

K4s
α1−1 for α1 < 1

That is we have shown that II is bounded either by a constant or by a
function which disappears faster than (4.7) for all s, T and α1.

4.1.2.3 Putting it all together

Our goal here is to find behaviour of the Laplace transform of φ(t) (4.5) to
use in the Laplace transform of w(t) (4.3). We have found in sections 4.1.2.1
and 4.1.2.2 that the Laplace transform of φ(t) is bounded by

Φ(s) = I + II

< sα−1K1 −K2 +

{
K3 for α1 > 1

sα1−1K4 for α1 < 1.

Recalling that the Laplace transform of w(s) is given by W (s) = 1− sΦ(s),
we have

W (s) < 1− s

(
sα−1K1 −K2 +

{
K3 for α1 > 1

sα1−1K4 for α1 < 1

)

< 1− sαK1 − sK2 +

{
sK3 for α1 > 1

sα1K4 for α1 < 1.
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We are interested in the small s asymptotic behaviour of W (s) here. As
s approaches zero, the first two terms of W (s) will dominate its behaviour
because, by assumption, α1 > α. Thus

W (s) ∼ 1− sαK1

= 1− πβα
sin(απ)Γ(α)

sα.

Recall that βα = Aατ1+α

α
, thus

W (s) ∼ 1−
(
Aατ

1+α

α

π

sin(απ)Γ(α)

)
sα.

In order to achieve the desired asymptotic result, we set the constant term
in this expression to be τ , giving

W (s) ∼ 1− (τs)α.

Notice that by setting

Aατ
1+α

α

π

sin(απ)Γ(α)
= τ,

we have defined the value for previously free constant Aα to be

Aα =
α sin(απ)Γ(α)

τπ
.

Note that ∫ t

0

w(τ) dτ

is dimensionless. Since dt′ has dimensions of t, we see that w(t) must have
dimensions of 1

t
. Since

w(t) ∼ Aα

(τ
t

)1+α

,

Aα must have dimensions 1
t
, which agrees with the value for Aα we have

found.

4.2 Fractional Diffusion

In Chapter 3 we derived the standard diffusion equation given a jump pdf
with finite mean waiting time and jump length variance. We can now consider
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variations which will lead to anomalous fractional diffusion. Here we consider
a long-tailed waiting-time distribution such as that introduced in Section 4.1.
That is, we consider an anomalous waiting time pdf (as opposed to a standard
Poissonian pdf) with the asymptotic behaviour

w(t) ∼ Aα

(τ
t

)1+α

, (4.13)

for 0 < α < 1, where Aα =
α sin(απ)Γ(α)

τπ
.

When considering standard diffusion we required a pdf with a finite mean
waiting time; however in this case we want w(t) to have an infinite mean.
As shown in Section 4.1, (4.13) satisfies this requirement and leads to the
Laplace asymptotic form

L(w(t)) = W (s)

∼ 1− (sτ)α.

Consider, as in the previous derivation, a jump length pdf with a finite second
moment leading to the Fourier asymptotic form (3.12). We find that the
Fourier-Laplace transformed jump pdf has form

Ψ̂(k, s) = W (s)λ̂(k)

≈ (1− (sτ)α)(1− c2k2)

≈ 1− c2k2 − (sτ)α,

ignoring cross terms.

We can substitute these values into (3.9) to find

P̂ (k, s) =
1−W (s)

s

1

1− Ψ̂(k, s)

=
1

s+Kαs1−αk2
, (4.14)

where Kα =
c2

τα
.

Recall that when considering a walker moving with finite mean waiting time
and finite variance of jump length, we found that P̂ (k, s) solved the standard
diffusion equation. Here we will show that this P̂ (k, s), moving according to
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the anomalous waiting time density w(t), solves the fractional diffusion equa-
tion in the long time, long distance limit.

Consider the time-fractional diffusion equation

∂αρ(x, t)

∂tα
= Kα

∂2ρ(x, t)

∂x2
.

Recall that the Laplace transforms of Riemann-Liouville fractional deriva-
tives take the reduced form (2.19). We will take advantage of this here,
assuming the initial condition ρ(x, 0) = δ(x).

sαP (x, s)− sα−1δ(x) = Kα
∂2

∂x2
P (x, s).

Taking a Fourier transform of the integer-order derivative (see property 2.9)
and the delta function (see property 2.11), we find

sαP̂ (k, s)− sα−1 = −Kαn
2s−αP̂ (k, s),

which can be solved for P̂ (k, s) to obtain

P̂ (k, s) +Kαn
2s−αP̂ (k, s) = 1/s

P̂ (k, s)(1 +Kαs
−αk2) = 1/s

P̂ (k, s) =
1

s+Kαs1−αk2

Which is the asymptotic expression P̂ (k, s) we previously found by consider-
ing the microscopic anomalous waiting time pdf w(t). Therefore this equation
exactly solves the time-fractional diffusion equation.

4.3 Conclusion

In this chapter we considered a walker with microscopic movements dis-
tributed according to the waiting time pdf with infinite mean

w(t) ∼ Aα

(τ
t

)1+α

,

where Aα = α sin(απ)Γ(α)
τπ

. We showed that the Laplace transform of this pdf
has the small s behaviour

W (s) ∼ 1− (sτ)α.
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We then used this result to show that the microscopic dynamics given by infi-
nite mean waiting times and finite variance of jump length of a random walker
can be modelled by the macroscopic fractional diffusion equation. This frac-
tional diffusion equation has an α-order fractional derivative instead of the
partial time derivative we see in the standard diffusion equation.

This shows the link between the microscopic movements of a random walker
moving in an anomalous manner and the fractional diffusion equation in ad-
dition to motivating the use of these diffusion equations to study anomalous
random walkers.
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Chapter 5

Long jumps

In Chapter 4 we saw that varying the microscopic dynamics of a continu-
ous time, continuous space random walker lead to the fractional diffusion
equation on a macroscopic scale. We saw that the macroscopic equation
(3.9) for describing random walkers derived in Chapter 3 reduces to a form
that solves the time-fractional diffusion equation when considering a random
walker moving with infinite mean waiting time.

In this chapter we will investigate the effects of allowing the walker to move
with infinite variance of jump length, but finite mean waiting time. We will
show that this variation in the microscopic movements of the walker leads
again to the fractional diffusion equation on the macroscopic scale; however
the fractional derivative will replace the second space partial derivative in
the standard diffusion equation in this case.

We will first show that the characteristic function of the jump length pdf

λ̂(k) = e−a|k|
µ

, (5.1)

where 1 < µ < 2 and a ∈ R+, corresponds to a pdf with the asymptotic
behaviour

λ(x) ∼ Aαa
−µ|x|−1−µ. (5.2)

We will show that in this case the variance of the jump process is infinite.

We will then follow a similar derivation to that in Chapter 4 to show that
when the walker takes jump lengths with the above anomalous form, P̂ (k, s)
reduces to a form that solves the fractional diffusion equation with a frac-
tional space derivative.
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5.1 Jump length probability density function

with infinite variance

In order to show that the asymptotic form (5.2) arises we must first introduce
the class of α-stable distributions, to which our λ(x) belongs.

Definition 5.1 (α-stable distribution). The α-stable distribution is defined
by its characteristic function,

λ̂α(a, k) = e−a|k|
α

.

The Gaussian distribution is an example of an α-stable distribution (α = 2),
with the well-known characteristic function

λ̂2(
σ2

2
, k) = e

σ2k2

2 .

A Cauchy distribution is defined as an α-stable distribution with 0 < α ≤ 1
and a Lévy distribution is defined as having 1 < α < 2. Here we will consider
a Lévy distribution, and find the asymptotic behaviour of the characteristic
function for large distance.

5.1.1 Asymptotic behaviour

First we perform an inverse Fourier transform to find λ(x) in the space-
domain, i.e.

λ(x) = F−1
(
λ̂(k)

)
=

1

2π

∫ ∞
−∞

eikxe−a|k|µ dk

=
1

2π

∫ ∞
−∞

(cos(kx) + i sin(kx)) e−a|k|
µ

dk.

As sine is an odd function and we are integrating over an even region, the
sine term in the integral vanishes, giving

λ(x) =
1

2π

∫ ∞
−∞

cos(kx)e−a|k|
µ

dk.

Notice here that we are integrating an even function over a symmetric region,
so the mean value of x is zero. We can express λ(x) as

λ(x) =
1

π

∫ ∞
0

(cos(kx)) e−ak
µ

dk

=
1

π

∫ ∞
0

(cos(k|x|)) e−akµ dk,
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Integrating by parts, we find for x 6= 0

λ(x) =
1

π

[
e−ak

µ
sin(kx)

x

]k=∞

k=0

− 1

π

∫ ∞
0

−aµkµ−1e−ak
µ

sin(kx)

x
dk

=
1

π
lim
k→∞

(
sin(kx)

xeakµ

)
+
aµ

π

∫ ∞
0

kµ−1e−ak
µ sin(kx)

x
dk

=
aµ

π

∫ ∞
0

kµ−1e−ak
µ sin(kx)

x
dk.

Noting that sin(kx)
x

= sin(k|x|)
|x| , we make the substitution q = k|x|, so dk =

1
|x| dq. We have

λ(x) =
aµ

π|x|1+µ

∫ ∞
0

e−aq
µ|x|−µ sin(q)qµ−1 dq

=
aµ

π|x|1+µ

(∫ ∞
0

sin(q)qµ−1 dq +

∫ ∞
0

(
e−aq

µ|x|−µ − 1
)

sin(q)qµ−1 dq

)
.

We are considering the asymptotic behaviour of this function for large x.
After Bazant, in the limit as x goes to infinity the second term in this integral
vanishes [3]. So we find that

λ(x) ∼ aµ

π|x|1+µ

∫ ∞
0

sin(q)qµ−1 dq.

Using the identity ∫ ∞
0

xµ−1 sin(ax) dx =
Γ(µ)

aµ
sin
(µπ

2

)
,

as seen in [10, §3.761], we have

λ(x) ∼ aµ

π|x|1+µ

∫ ∞
0

sin(q)qµ−1 dq

=
aµ

π|x|1+µ
sin
(πµ

2

)
Γ(µ) (5.3)

= Aµa
−µ|x|−1−µ, (5.4)

where Aµ = 1
π
a−µ−1µ sin

(
πµ
2

)
Γ(µ). This proof only holds for x 6= 0, which

is appropriate as we are considering the large-distance asymptotic behaviour
here. Recall that 1 < µ < 2. Notice that in the case µ = 2, (5.3) van-
ishes due to the sine term. As we expect, this derivation does not hold for
this case, and in fact we know that µ = 2 describes the Gaussian distribution.
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5.1.2 Infinite variance of jump length

We will now show that the pdf λ(x) has an infinite variance. Using the
asymptotic behaviour of λ(x), we see that the convergence or otherwise of
the second moment is given by〈

x2
〉

=

∫ ∞
−∞

x2λ(x) dx

= 2

∫ ∞
0

x2λ(x) dx,

which is controlled by the integral

〈
x2
〉

= 2

∫ ∞
T

x2Aµa
−µ|x|−1−µ dx

= 2Aµa
−µ
∫ ∞
T

|x|1−µ dx

which does not converge for µ ≤ 2. Therefore this distribution has an infinite
second moment and thus infinite variance. This means that we can use this
λ(x) as an anomalous jump length pdf to investigate the effect of infinite
jump length variance on the macroscopic movements of a random walker.

5.2 Long jumps

Here we consider a walker moving with a Poissonian waiting time distribution
and the Lévy distributed jump length pdf shown to have infinite variance in
Section 5.1. We will investigate how these microscopic movements change
the macroscopic dynamics of the walker, given by P̂ (k, s).

The characteristic function of the Lévy distributed pdf (5.1) has the asymp-
totic behaviour

λ̂(k) ∼ 1− aµ|k|µ,
by the expansion of the exponential function.

Incorporating this asymptotic fundamental jump pdf along with the Pois-
sonian waiting time behaviour (3.10) into the Fourier-Laplace transformed
jump pdf (3.13), we find

Ψ̂(k, s) ≈ (1− sτ)(1− aµ|k|µ)

≈ 1− sτ − aµ|k|µ,

49



ignoring cross-terms.

We can use this approximation for Ψ̂(k, s) and the Fourier-Laplace trans-
formed Poissonian waiting time distribution (3.10) in the expression P̂ (k, s)
derived in Chapter 3 to give

P̂ (k, s) =
1−W (s)

s

1

1− Ψ̂(k, s)

=
sτ

s

1

sτ + aµ|k|µ

=
τ

sτ + aµ|k|µ

=
1

s+Kµ|k|µ
,

where Kµ = aµ

τ
.

Now consider the fractional diffusion equation with the fractional derivative
replacing the partial time derivative,

∂ρ(x, t)

∂t
= Kµ

∂µ−∞ρ(x, t)

∂−∞xµ
,

where Kµ =
aµ

τ
and where

∂µ−∞ρ(x, t)

∂−∞xµ
denotes the µth Weyl fractional deriva-

tive of ρ(x, t) with a lower terminus of negative infinity (see Appendix C).

First we take a Fourier transform of this equation. Rather than the standard
definition of a Fourier transform of a fractional derivative given by

F
(
∂µ−∞f(x)

∂−∞xµ

)
= iµ|k|µf̂(k),

we will use the slight variation suggested by Compte [6] and subsequently
utilised by Metzler [16],

F
(
∂µ−∞f(x)

∂−∞xµ

)
= −|k|µf̂(k).

50



See Metzler [16, A.13] for a discussion on this Fourier transform method.
Thus we find

F
(
∂ρ(x, t)

∂t

)
= F

(
Kµ

∂µ−∞ρ(x, t)

∂−∞xµ

)
,

∂ρ̂(k, t)

∂t
= −Kµ|k|µρ̂(k, t).

We now apply the definition of the Laplace transform of an integer-order
derivative (2.4) to find

L
(
∂ρ̂(k, t)

∂t

)
= L (−Kµ|k|µρ̂(k, t)) ,

sP̂ (k, s)− 1 = −Kµ|k|µP̂ (k, s).

Solving for P̂ (k, s) gives us

P̂ (k, s) =
1

s+Kµ|n|µ
.

We see that P̂ (k, s) that arose from considering a walker with the anomalous
jump pdf λ(x) and a Poissonian waiting time pdf solves the space-fractional
diffusion equation.

5.3 Conclusion

We showed in Chapter 3 that the movement of a random walker moving with
a Gaussian jump length pdf and Poissonian waiting time pdf can be described
by the standard diffusion equation. In Chapter 4 we saw that changing the
waiting time distribution to one with a diverging mean waiting time altered
the movement of the walker to being described by a time-fractional diffusion
equation.

In this chapter, we considered a random walker moving with the miscroscopic
movements described by a Poissonian waiting time density (with finite first
two moments) and a Lévy distributed jump length density (with infinite
variance) with the characteristic equation

λ̂(k) = e−a
µ|k|µ ,
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for 1 < µ < 2 and a ∈ R. We showed that this jump length pdf had the
small k asymptotic behaviour

λ̂(k) ∼ 1− aµ|k|µ.

We then used this asymptotic behaviour to show that the microscopic dynam-
ics given by finite mean waiting time and infinite variance of jump length can
be seen in the fractional diffusion equation, with a µ-order fractional deriva-
tive replacing the second partial space derivative in the standard diffusion
equation. As in Chapter 4, we see that this µ is given by the fundamental
jump probability density function λ(x).
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Chapter 6

Fractional Diffusion Equation
in a Bounded Space Domain

In Chapter 4 we motivated the use of time-fractional diffusion equations by
modelling the macroscopic dynamics of a random walk with anomalous dy-
namics. We saw that altering the microscopic movements of the random
walker in this way changes the macroscopic behaviour of the random walker
we see described by the function ρ(x, t). We saw that this expression, in the
long time, long distance limit, solves the α-order time-fractional diffusion
equation. We saw that this α value is given directly from the fundamental
waiting time probability density function, and we considered the case where
0 < α ≤ 2.

In this chapter, we will solve this time-fractional diffusion equation on a one-
dimensional bounded space domain 0 < x < L. That is, we will solve the
boundary problem

∂αρ(x, t)

∂tα
= b

∂2ρ(x, t)

∂x2
, (6.1)

for 0 < α ≤ 2, with

ρ(0, t) = ρ(L, t) = 0 (6.2)

ρ(x, 0) = f(x) 0 < x < L (6.3)

ρt(x, 0) = 0 0 < x < L 1 < α ≤ 2. (6.4)

The following derivation is based on the paper “Solution for a Fractional
Diffusion-Wave Equation Defined in a Bounded Domain” by Agrawal [2].
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As discussed in Chapter 1.1 there are many definitions for fractional deriva-
tives. In any problem the first step is to assess which definition is most
appropriate for addressing the requirements of the problem. The formula for
the Laplace transform of a Caputo fractional derivative (2.20) includes values
of the function and its integer-order derivatives at time t = 0. Due to this
property, when a Caputo derivative is used to solve differential equations the
given initial conditions can be included without any fractional derivatives of
these being calculated. Therefore the fractional derivatives in this problem
will be taken to be Caputo derivatives (see Section 1.1.2 for a definition and
an outline of some properties of these).

Recall that transforming fractional derivatives into Fourier-Laplace space
reduces them to an algebraic form. Here, because of the finite domain
0 < x < L, the appropriate transform to move the problem into the wavenum-
ber domain is the finite sine transform (F.S.T.) (see Eq. 2.12).

Taking an F.S.T. of the fractional diffusion equation (that is, multiplying by
sin kxπ

L
and integrating from 0 to L) and then performing the integration by

parts, we find

S
(
∂αρ(x, t)

∂tα

)
= S

(
b
∂2ρ(x, t)

∂x2

)
∫ L

0

∂αρ(x, t)

∂tα
sin

kπx

L
dx = b

∫ L

0

∂2ρ(x, t)

∂x2
sin

kπx

L
dx

= b

[
sin

kπx

L

∂ρ

∂x

]L
0

− bkπ

L

∫ L

0

cos
kπx

L

∂ρ(x, t)

∂x
dx

= −bkπ
L

([
cos

kπ

L

]L
0

+
bkπ

L

∫ L

0

sin
kπx

L
ρ dx

)

=
bkπ

L
ρ(L, t) cos kπ − b2kπ

L
ρ(0, t)

−
(
bkπ

L

)2 ∫ L

0

sin
kπx

L
ρ(x, t) dx.

Applying the boundary condition (6.2), the first two terms on the right hand
side vanish and we see that the F.S.T. of the fractional diffusion equation
reduces to
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∫ L

0

∂αρ(x, t)

∂tα
sin

kπx

L
dx = −

(
bkπ

L

)2 ∫ L

0

ρ(x, t) sin
kπx

L
dx

∂αρ̄(k, t)

∂tα
= −(bka)2ρ̄(k, t), (6.5)

where ρ̄(k, t) denotes the finite sine transform of ρ(x, t) and a =
π

L
.

Due to due to our choice of Caputo derivative, the only manipulation required
of the initial conditions (6.3) and (6.4) are finite sine transforms. This moves
the initial conditions into wavenumber domain for application to the problem.
These become

ρ̄(k, 0) =

∫ L

0

ρ(x, 0) sin

(
kxπ

L

)
dx

=

∫ L

0

f(x) sin

(
kxπ

L

)
dx

= f̄(k) (6.6)

ρ̄t(k, 0) =

∫ L

0

ρt(x, 0) sin

(
kxπ

L

)
dx

= 0, (6.7)

where f̄(x) denotes the finite sine transform of f(x).

Taking the Laplace transform of this fractional derivative term (see equation
2.20) will reduce the problem to an algebraic one in the Laplace variable s.
Thus

L
(
∂αρ̄(k, t)

∂tα

)
= −L

(
(bka)2ρ̄(k, t)

)
sαP̄ (k, s)− sα−1ρ̄(k, 0)− sα−2ρ̄t(k, 0) = −(bka)2P̄ (k, s),

where P̄ (k, s) is the Laplace transform of ρ̄(k, t). Applying the initial condi-
tions (6.6) and (6.7), we find that

sαP̄ (k, s)− sα−1f̄(k) = −(bka)2P̄ (k, s),
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which can be solved solving for P̄ (k, s);

sαP̄ (k, s)− sα−1f̄(k) + (bka)2P̄ (k, s) = 0

P̄ (k, s)
(
sα + (bka)2

)
= sα−1f̄(k)

P̄ (k, s) =
sα−1f̄(k)

sα + (bka)2
.

To transform this solution back into the space-time domain we must perform
an inverse Laplace transform,

ρ̄(n, t) = L−1
(
P̄ (k, s)

)
= L−1

(
sα−1f̄(k)

sα + (bka)2

)
= f̄(k)L−1

(
sα−1

sα + (bka)2

)
= f̄(k)Eα(−(bka)2tα).

Here we have used the Laplace transform of the Mittag-Leffler function in
Eq. (2.17). Taking an inverse finite sine transform (2.13), we find

ρ(x, t) = S−1(ρ̄(k, t))

= S−1
(
f̄(k)Eα(−(bka)2tα)

)
=

2

L

∞∑
k=1

f̄(k)Eα(−(bka)2tα) sin (akx).

Substituting the transformed boundary condition (6.6) gives

ρ(x, t) =
2

L

∞∑
k=1

Eα(−
(
bkπ

L

)2

tα) sin
kxπ

L

∫ L

0

f(r) sin (
krπ

L
) dr. (6.8)

Here we have solved the α-order time-fractional diffusion equation to find a
solution for ρ(x, t). We have considered the case where 0 < α ≤ 2. Notice
that this includes the integer-order cases α = 1 and α = 2. If we substitute
α = 1 into our solution (6.8), we find

ρ(x, t) =
2

L

∞∑
k=1

E1(−
(
bkπ

L

)2

t) sin
kxπ

L

∫ L

0

f(r) sin (
krπ

L
) dr

=
2

L

∞∑
k=1

e−( bkπL )
2
t sin

kxπ

L

∫ L

0

f(r) sin (
krπ

L
) dr,
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(a) α = 1
2 (b) α = 1

(c) α = 3
2 (d) α = 2

Figure 6.1: Anomalous diffusion with long rests and varying exponents 0 <
α ≤ 2. After [2].

which is the solution to the diffusion equation [18]. If we substitute the value
α = 2, we find

ρ(x, t) =
2

L

∞∑
k=1

E2(−
(
bkπ

L

)2

t2) sin
kxπ

L

∫ L

0

f(r) sin (
krπ

L
) dr

=
2

L

∞∑
k=1

cos

(
bkπt

L

)
sin

kxπ

L

∫ L

0

f(r) sin (
krπ

L
) dr,

which is the solution to the wave equation [18]. These expressions indicate
that the fractional diffusion equation (on a finite domain using Caputo frac-
tional derivatives) reduces exactly to the expected results for α = 1, 2.

It is also interesting to examine the solutions for non-integer α. By truncating
the summations in the solution (6.8) at k = 20 and plotting a walker released
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at site x = 1 for

f(x) =

{
x, for 0 < x ≤ 1

2− x, for 1 ≤ x < 2,

with b = 1 over 0 < t < 2, Agrawal [2] produced plots for various values of
α. Plotting for α = 1

2
, 1, 3

2
, 2, we see in Figure 6.1 that α = 1

2
shows a slower

diffusion behaviour than that of α = 1. Similarly, α = 3
2

shows a behaviour
that is a combination of that we observe for α = 1 (that is, standard diffusion
solution), and for α = 2 (that is, the standard wave equation solution).

6.1 Conclusion

In this chapter we have solved the time-fractional diffusion equation on a
finite domain by moving the problem into the Laplace-wavenumber domain,
solving for P̂ (k, s) and then transforming the solution back into the space-
time domain. This process was simplified by the choice of the Caputo defi-
nition of fractional derivatives. The Laplace transforms of these derivatives
contain exactly the Laplace transform of the original function ρ(0, s) and its
derivatives, which allows the initial conditions to be applied with ease. This
solution for ρ(x, t) gives us the probability of finding a walker in (x, x+ dx)
between t and t+ dt.
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Chapter 7

Fractional Diffusion-Wave
Equation in Unbounded Space

In Chapter 4 we derived the fractional diffusion equation

∂α(ρ(x, t))

∂tα
= Kα

∂2ρ(x, t)

∂x2
,

where Kα = c2

τα
and 0 < α < 1 from a Gaussian jump length pdf and a

waiting time pdf with infinite mean. In that derivation we found the closed
form solution for the probability of finding a walker at site x at time t in
Fourier-Laplace space to be

P̂ (k, s) =
1

s+Kαk2s1−α .

In Chapter 6 we solved this time-fractional diffusion equation for 0 < α ≤ 2
on the one-dimensional line 0 < x < L. Agrawal [2] showed that 1

2
-order

fractional diffusion equations display slower diffusion than standard diffu-
sion. This is consistent with Chapter 4 where we showed that the fat-tailed
waiting time density corresponding to long waiting times between jumps
leads to the fractional diffusion equation with 0 < α < 1.

In this chapter we will transform P̂ (k, s) (derived in Chapter 4) into the so-
lution (ρ(x, t)) to the time-fractional diffusion equation with 0 < α < 1. We
will then compare ρ(x, t) for the special case α = 1

2
to that of the standard

diffusion equation.

We will find that the solution ρ(x, t) is in terms of Fox functions, so we
introduce these functions here.
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Definition 7.1 (Fox function [9]).

Hm,n
p,q

[
z

∣∣∣∣ (a1, α1)...(ap, αp)
(b1, β1)...(bp, βp)

]
=

1

2πi

∫
C

Πm
j=1Γ(bj − βjs)Πn

j=1Γ(1− aj + αjs)

Πp
j=n+1Γ(aj + αjs)Π

q
j=m+1Γ(1− bj + βjs)

zs ds,

where

p, q,m, n ∈ Z+, αj, βj ∈ R+, aj, bj ∈ C

and “C is a contour in the complex s plane separating the poles in such a way
that the poles of of Γ(bj−βjs) lie to the right and the poles of Γ(1−aj +αjs)
lie to the left of C,” [9, p. 743].

These Fox functions are a generalisation of many special functions, including
Meijer G functions (defined below), hypergeometric functions, Bessel func-
tions and Mellin-Barnes functions. In particular we will use the Meijer G
function in this thesis.

Definition 7.2 (Meijer G function).

Gm,n
p,q

[
z

∣∣∣∣ (a1, ..., ap)
(b1, ..., bq)

]
=

1

2πi

∫
C

Πm
j=1Γ(bj − s)Πn

j=1Γ(1− aj + s)

Πp
j=n+1Γ(aj − s)Πq

j=m+1Γ(1− bj + s)
zs ds.

where

p, q,m, n ∈ Z+, aj, bj ∈ C

and C is a contour in the complex plane separating the poles of Γ(bj− s) and
Γ(1− aj + s).

In the following derivation we will use the theorem relating the Mittag-Leffler
function to Fox functions, as seen in Mathai et al. [15, p.176].

Theorem 7.1. The Mittag-Leffler and Fox functions are related by∫ ∞
0

cos(mp)Eα,β(−ap2) dp =
π

m
H1,0

1,1

[
m2

a

∣∣∣∣ (β, α)
(1, 2)

]
.

Proof. By the definition of the Mittag-Leffler function we have∫ ∞
0

cos(mp)Eα,β(−ap2) dp =

∫ ∞
0

cos(mp)
∞∑
k=0

(−a)kp2k

Γ(αk + β)
dt

=
∞∑
k=0

(
(−a)k

Γ(αk + β)

∫ ∞
0

cos(mp)p2k dp

)
.

60



This expression is equivalent (Mathai et al. [15, p.176]) to∫ ∞
0

cos(mp)Eα,β(−ap2) dp = − π
m

1

2πi

∫
C

Γ(1 + k)

Γ(αk + β)

1

m2k
ds.

By letting k = −s, we find∫ ∞
0

cos(mp)Eα,β(−ap2) dp =
π

m

1

2πi

∫
C

Γ(1− s)
Γ(−sα + β)

m2s

as
ds

=
π

m
H1,0

1,1

[
m2

a

∣∣∣∣ (β, α)
(1, 2)

]
.

Our first task is to perform an inverse Laplace transform on the expression
for P̂ (n = k, s). Using the Laplace transform of the Mittag-Leffler function
(2.17) with β = 1 and a = Kαk

2, we have

ρ̂(k, t) = L−1(P̂ (k, s))

= L−1

(
1

s+Kαk2s1−α

)
= Eα(−Kαk

2tα).

We move this solution into the space domain by taking the inverse Fourier
transform, giving us

ρ(x, t) = F−1 (ρ̂(k, t))

= F−1(Eα(−Kαn
2tα))

=
1

2π

∫ ∞
−∞

e−inxEα(−Kαn
2tα) dn.

We aim to apply Theorem 7.1. Thus

ρ(x, t) =
1

2π

∫ ∞
−∞

Eα(−Kαn
2tα)(cos(nx)− i sin(nx)) dn

=
1

2π

(∫ ∞
−∞

Eα(−Kαn
2tα) cos(nx) dn

−
∫ ∞
−∞

Eα(−Kαn
2tα)i sin(nx) dn

)
.

61



As sine is an odd function (and thus vanishes under integration over an even
range) this becomes

ρ(x, t) =
1

2π

∫ ∞
−∞

Eα(−Kαn
2tα) cos(nx) dn

=
1

π

∫ ∞
0

Eα(−Kαn
2tα) cos(nx) dn.

By Theorem 7.1, we find

ρ(x, t) =
1

π

∫ ∞
0

Eα(−Kαn
2tα) cos(nx) dn

=
1

|x|
H1,0

1,1

[
x2

Kαtα

∣∣∣∣ (1, α)
(1, 2)

]
.

As shown by Metzler [16], this Fox function is equivalent to

ρ(x, t) =
1√

4πKαtα
H2,0

1,2

[
x2

4Kαtα

∣∣∣∣ (1− α
2
, α)

(0, 1), (1
2
, 1)

]
.

Note that we have therefore provided a formal solution to the time-fractional
diffusion equation of order 0 < α < 1 on an unbounded space domain. This
expression shows the dependence of ρ(x, t) on the constants α and Kα, given
in the diffusion equation.

This solution is in terms of a complicated Fox function, so in general it is
difficult to gain useful insights about the movement of the walker. However
in the special case α = 1

2
we can reduce the Fox function in ρ(x, t) expression

to a Meijer-G function, which we can plot in order to examine the movement
of the walker in this slow diffusion case. Note that this is an analogous form
to that considered on a bounded space domain in Chapter 6, and in fact we
see similar results here.

According to Metzler and Klafter [16] for α = 1
2

the closed form solution
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(a) Anomalous diffusion with long
rests and exponent α = 1

2

(b) Standard gaussian diffusion

Figure 7.1: Closed-form solutions ρ(x, t) for (a) fractional diffusion and (b)
standard diffusion, drawn for the times t = 0.1, 1, 10

ρ(x, t) reduces to

ρ(x, t) =
1√

4πK 1
2
t
1
2

H2,0
1,2

[
x2

4K 1
2
t
1
2

∣∣∣∣ (3
4
, 1

2
)

(0, 1), (1
2
, 1)

]

=
1

2πi
√

4πK 1
2
t
1
2

∫
C

Γ(−s)Γ(1
2
− s)

Γ(3
4

+ 1
2
s)

 x2

4K 1
2
t
1
2

s

ds

=
1

2πi
√

8π3K 1
2
t
1
2

∫
C

Γ(−s)Γ(
1

4
− s)Γ(

1

2
− s)

(
x2

16K 1
2
t
1
2

)2s

ds

=
1√

8π3K 1
2
t
1
2

G3,0
0,3

( x2

16K 1
2
t
1
2

)2 ∣∣∣∣ (0, 1
4
, 1

2
)

 .
We have plotted this solution alongside the solution for standard diffusion
for the times t = 0.1, 1, 10 in Figure 7.1. In this figure we can clearly see the
tendency of the walker to remain near the origin in the anomalous diffusion
case. This reflects the very long times the walker can wait at any site before
jumping, causing the probability of finding the walker to remain large near
the origin for long times. This difference is more pronounced in the log-
transformed solutions plotted in Figure 7.2.
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(a) Anomalous diffusion with long
rests and exponent α = 1

2

(b) Standard Gaussian diffusion

Figure 7.2: Log-transformed solutions ρ(x, t) for (a) fractional diffusion and
(b) standard diffusion, drawn for the times t = 0.1, 1, 10

7.1 Conclusion

In this chapter we have solved the α-order fractional diffusion equation on an
unbounded space domain for 0 < α < 1. This derivation built upon Chapter
4 in which the expression P̂ (k, s) was derived for an anomalous waiting time
density. By converting this function back into the space-time domain we
recovered a closed form solution for ρ(x, t). We plotted these solutions and
saw that, compared to diffusion with a standard waiting time density, the
walker tended to remain near the origin for much longer times.
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Chapter 8

Conclusion

In this thesis we have introduced the field of fractional calculus (Chapters 1
and 2), motivated the used of fractional diffusion equations to model standard
(Chapter 3) and anomalous (Chapters 4 and 5) random walks and presented
two solution methods for these fractional diffusion equations (Chapters 6 and
7).

In Chapter 3 we set up a method by which to describe the microscopic move-
ments of a continuous time, continuous space random walker with a single
macroscopic equation. We then showed that this macroscopic equation for
a CRW moving with finite mean waiting time and finite variance of jump
length solved the standard diffusion equation in the long time, long distance
limit. Building on this concept, we used a similar process in Chapters 4 and
Chapter 5 to show that the macroscopic equation describing the anomalous
movements of a CRW solved the time-fractional and space-fractional diffu-
sion equations respectively.

In Chapter 6 we solved the α-order time-fractional diffusion equation on a
bounded space domain with homogeneous boundary conditions. The solution
we found, ρ(x, t), reduces exactly to the solutions to the standard diffusion
and wave equations when α = 1 and α = 2 respectively. We found that
the fractional-order cases are consistent with a continuum scale of diffusion
– that is, the case α = 1

2
exhibits slower diffusion to α = 1, and the diffusion

of order 3
2

shows properties of both standard diffusion and the wave equation.

This was found to be consistent with the fractional diffusion equation on an
unbounded space domain, examined in Chapter 7. In this chapter we again
saw that diffusion of order α = 1

2
remained near the origin for much longer

times than that of order α = 1.
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Appendix A

Proof of the Cauchy theorem
for repeated integration

Theorem A.1 (The Cauchy theorem for repeated integration). Let f(t) be
a continuous function. We can calculate n repeated integrations of f(t) by

d−nf(t)

dt−n
=

∫ t

0

∫ τ1

0

...

∫ τn−1

0

f(τn) dτn... dτ2 dτ1

=
1

(n− 1)!

∫ t

0

f(τ)(t− τ)n−1 dτ

for n > 0 ∈ Z+, where Γ(n) =
∫∞

0
yn−1e−y dy.

Proof. We will prove Theorem A.1 by induction. For n = 1, we see that

d

dt

(
d−1f(t)

dt−1

)
=

d

dt

(∫ t

0

f(τ) dτ

)
= f(t).

Notice that by the binomial theorem, Theorem A.1 is equivalent to

d−nf(t)

dt−n
=

1

(n− 1)!

∫ t

0

f(τ)(t− τ)n−1 dτ

=
1

(n− 1)!

∫ t

0

∞∑
j=0

(
n− 1

j

)
(−1)n−1−jtjτn−1−jf(τ) dτ

=
∞∑
j=0

(
n− 1

j

)
(−1)n−1−j

(n− 1)!
tj
∫ t

0

τn−1−jf(τ) dτ.
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As the inductive hypothesis, assume Theorem A.1 holds for n = k− 1. That
is assume that

d−(k−1)f(t)

dt−(k−1)
=

1

(k − 2)!

∫ t

0

f(τ)(t− τ)k−2 dτ

=
∞∑
j=0

(−1)k−2−j
(
k − 2

j

)
1

(k − 2)!
tj
∫ t

0

τ k−2−jf(τ) dτ

We will now show that this implies it holds for k, which is equivalent to
showing that

d

dt

(
d−kf(t)

dt−k

)
=
d−(k−1)f(t)

dt−(k−1)
.

Therefore taking this derivative we have for the case n = k

d

dt

(
d−kf(t)

dt−k

)
=

d

dt

(
∞∑
j=0

(−1)k−1−j
(
k − 1

j

)
1

(k − 1)!
tj
∫ t

0

τ k−1−jf(τ) dτ

)

=
∞∑
j=0

(−1)k−1−j
(
k − 1

j

)
j

(k − 1)!
tj−1

∫ t

0

τ k−1−jf(τ) dτ

+
∞∑
j=0

(−1)k−1−j 1

(k − 1)!
tj
d

dt

(∫ t

0

τ k−1−jf(τ)

)
.

By the relationship(
k − 1

j

)
j

(k − 1)!
=

1

(j − 1)

1

(k − 1− j)!
=

(
k − 2

j − 1

)
,

we have that

d

dt

(
d−kf(t)

dt−k

)
=
∞∑
j=0

(−1)k−1−j
(
k − 2

j − 1

)
1

(k − 2)!
tj−1

∫ t

0

τ k−1−jf(τ) dτ

+
∞∑
j=0

(−1)k−1−j
(
k − 1

j

)
1

(k − 1)!
tjtk−1−jf(t).
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Let i = j − 1, giving

=
∞∑

i=−1

(−1)k−2−i
(
k − 2

i

)
1

(k − 2)!
ti
∫ t

0

τ k−2−if(τ) dτ

+
∞∑
j=0

(−1)k−1−j
(
k − 1

j

)
1

(k − 1)!
tjtk−1−jf(t)

=
∞∑
i=0

(−1)k−2−i
(
k − 2

i

)
1

(k − 2)!
ti
∫ t

0

τ k−2−if(τ) dτ

+
1

(k − 1)!
f(t)(t− t)k−1

=
d−(k−1)f(t)

dt−(k−1)

Therefore, by induction, Theorem A.1 holds.
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Appendix B

Proof of Euler’s reflection
formula

Theorem B.1 (Euler’s reflection formula).

Γ(1− α) =
π

sin(απ)Γ(α)
(B.1)

Proof. By using the infinite product definition of the Gamma function

1

Γ(α)
= xeγα

∞∏
n=1

((
1 +

α

n

)
e−α/n

)
we know

1

Γ(α)

1

Γ(−α)
= −α2eγαe−γα

∞∏
n=1

((
1 +

α

n

)
e−α/n

)((
1− α

n

)
eα/n

)
= −α2

∞∏
n=1

(
1− α2

n2

)
But

−Γ(1− α)

α
= Γ(−α)

and thus

1

Γ(α)

1

Γ(1− α)
= α

∞∏
n=1

(
1− α2

n2

)
.
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The infinite product definition of

sin(x)

x
=
∞∏
n=1

(
1− x2

n2π2

)

allows us to find (by making the substitution απ = x)

sin(απ)

π
= α

∞∏
n=1

(
1− α2

n2

)

so that

1

Γ(α)

1

Γ(1− α)
=

sin(απ)

π

and thus

Γ(1− α) =
π

sin(απ)Γ(α)
.
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Appendix C

The Weyl Fractional Derivative

The Weyl fractional derivative is a Riemann-Liouville fractional derivative
with the lower bound on the fractional integral negative infinity (as opposed
to 0).

Definition C.1 (The Weyl fractional derivative). Let m = bαc+ 1. Assum-
ing f(t) is integrable and m+ 1 times continuously differentiable, let

dα−∞f(t)

dtα−∞
=

dm

dtm

(
d−(m−α)f(t)

dt−(m−α)

)
=

1

Γ(m− α)

dm

dtm

(∫ t

−∞

f(τ)

(t− τ)α−m+1
dτ

)
(C.1)

for m− 1 ≤ α < m, m ∈ Z.

These Weyl fractional derivatives have a Fourier transform given by (as seen
in Metzler in Ref. [16, p. 59])

F
(
dα−∞f(t)

dtα−∞

)
= (ik)µf̂(k)

or, more simply (as Metzler follows Compte in Ref. [6])

F
(
dα−∞f(t)

dtα−∞

)
= −|k|µf(k)
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